Extreme doubt on strong enough. The author of this article barely understands the words they are using. Cool it strain hardens, so do so many other materials. Cool it’s tough like many other materials. Wow it has more links than others. No actual numbers about toughness, yield, ultimate strength, cycle limits, etc. It’s great research, but it absolutely isn’t going to magically solve the space elevator issue.
Any company will market that its ideas are possible. The article you linked is promising, but take it with a huge grain of salt. They are moving the goalposts the whole article. Flat graphene is a great material for space elevators, but it can’t currently be created without defects. Polycrystaline means the graphene created includes defects sort of. It means the graphene they created that is km’s long has shitloads of places where cycle loading will cause it to fail way under (like 10%) of its expected load carrying capacity.
Edit: I want this technology to exist. My MS in mechanical engineering focused in materials science tells me we are quite far from it happening.
It means you can increase the amount you put in to get a higher amount of output, but that doesn’t mean it’s actually doable in terms of cost or available resources etc
Could this be used to make a space elevator?
No.
What about a space escalator?
Escalator is smart, because if it breaks, you can still walk to space.
I heard it was for lifts only
I think I remember reading that a structure strong enough would have to be wider than the earth
The stronger the material the thinner it could be.
There are a lot of properties in the word ‘stronger’ though.
It would probably be strong enough, but not viable to manufacture.
Extreme doubt on strong enough. The author of this article barely understands the words they are using. Cool it strain hardens, so do so many other materials. Cool it’s tough like many other materials. Wow it has more links than others. No actual numbers about toughness, yield, ultimate strength, cycle limits, etc. It’s great research, but it absolutely isn’t going to magically solve the space elevator issue.
Space elevator companies seem to think that materials exist that are strong enough, just that they are not long enough.
https://www.isec.org/space-elevator-tether-materials
Very much layman conjecture, but my assumption is that this material is stronger than carbon nanotubes and graphene.
Any company will market that its ideas are possible. The article you linked is promising, but take it with a huge grain of salt. They are moving the goalposts the whole article. Flat graphene is a great material for space elevators, but it can’t currently be created without defects. Polycrystaline means the graphene created includes defects sort of. It means the graphene they created that is km’s long has shitloads of places where cycle loading will cause it to fail way under (like 10%) of its expected load carrying capacity.
Edit: I want this technology to exist. My MS in mechanical engineering focused in materials science tells me we are quite far from it happening.
“the manufacturing process of the 2D polymer is highly scalable”
First line of the article
It means you can increase the amount you put in to get a higher amount of output, but that doesn’t mean it’s actually doable in terms of cost or available resources etc
Ok but there’s ‘high’ and then there’s ‘low earth orbit’.
That’s what my dispensary tells me too
My man!
Scalability is not viability.